3D printed nozzles on a silicon fluidic chip
نویسندگان
چکیده
منابع مشابه
3D printed nervous system on a chip.
Bioinspired organ-level in vitro platforms are emerging as effective technologies for fundamental research, drug discovery, and personalized healthcare. In particular, models for nervous system research are especially important, due to the complexity of neurological phenomena and challenges associated with developing targeted treatment of neurological disorders. Here we introduce an additive ma...
متن کاملAeroacoustic Improvements to Fluidic Chevron Nozzles
Fluidic chevrons use injected air near the trailing edge of a nozzle to emulate mixing and jet noise reduction characteristics of mechanical chevrons. While previous investigations of “first generation” fluidic chevron nozzles showed only marginal improvements in effective perceived noise levels when compared to nozzles without injection, significant improvements in noise reduction characterist...
متن کاملInvisibility Cloak Printed on a Photonic Chip
Invisibility cloak capable of hiding an object can be achieved by properly manipulating electromagnetic field. Such a remarkable ability has been shown in transformation and ray optics. Alternatively, it may be realistic to create a spatial cloak by means of confining electromagnetic field in three-dimensional arrayed waveguides and introducing appropriate collective curvature surrounding an ob...
متن کامل3D Printed Unibody Lab-on-a-Chip: Features Survey and Check-Valves Integration dagger
The unibody lab-on-a-chip (ULOC) concept entails a fast and affordable micro-prototyping system built around a single monolithic 3D printed element (unibody). A consumer-grade stereo lithography (SL) 3D printer can configure ULOCs with different forms of sample delivery, transport, handling and readout, while minimizing material costs and fabrication time. ULOC centralizes all complex fabricati...
متن کاملCharacterization of Silicon-based Ultrasonic Nozzles
This paper presents the design and characterization of micro-fabricated 0.5 MHz silicon-based ultrasonic nozzles. Each nozzle is made of a piezoelectric drive section and a silicon-resonator consisting of five Fourier horns, each with half wavelength design and twice amplitude magnification. Results of impedance analysis and measurement of longitudinal vibration confirmed the simulation results...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Review of Scientific Instruments
سال: 2019
ISSN: 0034-6748,1089-7623
DOI: 10.1063/1.5080428